Quartet-Based Learning of Hierarchical Latent Class Models: Discovery of Shallow Latent Variables

نویسندگان

  • Tao Chen
  • Nevin Lianwen Zhang
چکیده

Hierarchical latent class (HLC) models are tree-structured Bayesian networks where leaf nodes are observed while internal nodes are hidden. The currently most efficient algorithm for learning HLC models can deal with only a few dozen observed variables. While this is sufficient for some applications, more efficient algorithms are needed for domains with, e.g., hundreds of observed variables. With this demand in mind, we explore quartet-based methods. The basic idea comes from phylogenetic tree reconstruction: One first learn submodels for quartets — groups of four observed variables— and then derive an overall model from those quartet submodels. As the first step in the new direction, this paper assumes that there is a way to find the “true” submodel for any quartet and investigate how to identify shallow latent variables efficiently by using the minimum number of quartet submodels. By shallow latent variables, we mean latent variables that are connected to at least one observed variable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quartet-Based Learning of Shallow Latent Variables

Hierarchical latent class(HLC) models are tree-structured Bayesian networks where leaf nodes are observed while internal nodes are hidden. We explore the following two-stage approach for learning HLC models: One first identifies the shallow latent variables – latent variables adjacent to observed variables – and then determines the structure among the shallow and possibly some other “deep” late...

متن کامل

Discovering Hidden Variables in Noisy-Or Networks using Quartet Tests

We give a polynomial-time algorithm for provably learning the structure and parameters of bipartite noisy-or Bayesian networks of binary variables where the top layer is completely hidden. Unsupervised learning of these models is a form of discrete factor analysis, enabling the discovery of hidden variables and their causal relationships with observed data. We obtain an efficient learning algor...

متن کامل

Learning Hierarchical Latent Class Models

Hierarchical latent class (HLC) models generalize latent class models. As models for cluster analysis, they suit more applications than the latter because they relax the often untrue conditional independence assumption. They also facilitate the discovery of latent causal structures and the induction of probabilistic models that capture complex dependencies and yet have low inferential complexit...

متن کامل

Discovery of latent structures: Experience with the CoIL Challenge 2000 data set

The authors present a case study to demonstrate the possibility of discovering complex and interesting latent structures using hierarchical latent class (HLC) models. A similar effort was made earlier by Zhang (2002), but that study involved only small applications with 4 or 5 observed variables and no more than 2 latent variables due to the lack of efficient learning algorithms. Significant pr...

متن کامل

An application of Measurement error evaluation using latent class analysis

‎Latent class analysis (LCA) is a method of evaluating non sampling errors‎, ‎especially measurement error in categorical data‎. ‎Biemer (2011) introduced four latent class modeling approaches‎: ‎probability model parameterization‎, ‎log linear model‎, ‎modified path model‎, ‎and graphical model using path diagrams‎. ‎These models are interchangeable‎. ‎Latent class probability models express l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006